Práctica 5

Curvas en el espacio

- 1. Probar que si una curva satisface una de las siguientes condiciones, es una recta:
 - (a) Existe un punto por el que pasan todas las tangentes a la curva.
 - (b) Todas las tangentes a la curva son paralelas entre sí.
 - (c) Todos los planos normales son paralelos entre sí.
- 2. Probar que si una curva satisface una de las siguientes condiciones, entonces es plana:
 - (a) La intersección de todos sus planos osculadores es no vacía;
 - (b) Todos sus planos osculadores son paralelos.
- 3. Sea \mathcal{C} la curva parametrizada por $t\mapsto (a\sin^2(t), a\sin(t)\cos(t), a\cos(t))$. Probar que
 - (a) C está contenida en la superficie de una esfera;
 - (b) Todos sus planos normales pasan por el origen.
- 4. Sea $\alpha: \mathbb{R} \to \mathbb{R}^3$ la curva parametrizada por

$$\alpha(t) = \begin{cases} (t, e^{-1/t^2}, 0) & \text{si } t < 0\\ (0, 0, 0) & \text{si } t = 0\\ (t, 0, e^{-1/t^2}) & \text{si } t > 0. \end{cases}$$

- (a) Probar que la curva es diferenciable y regular.
- (b) Calcular los puntos de curvatura 0 de la curva.
- (c) Calcular los planos osculadores de la curva cuando t tiende a 0.
- (d) Probar que la torsión de la curva es 0, pero la curva no es plana.
- (e) Construir una curva β plana que tenga la mismas funciones curvatura y torsión que α . ¿De qué modo se compatibiliza esto con el teorema fundamental de las curvas?
- 5. Mostrar que si κ es la curvatura de una curva α parametrizada por longitud de arco, entonces su torsión es

$$\tau(s) = \frac{\langle \alpha'(s) \times \alpha''(s), \alpha'''(s) \rangle}{\kappa^2(s)}.$$

- 6. Sea $\alpha: I \to \mathbb{R}^3$ una curva no necesariamente parametrizada por la longitud de arco y sea $\beta: J \to \mathbb{R}^3$ una reparametrización de α por la longitud de arco s = s(t) medido desde $t_0 \in I$. Sea t = t(s) la función inversa de s y denotemos $\frac{d\alpha}{dt} = \alpha'$, $\frac{d^2\alpha}{dt^2} = \alpha''$ y $\frac{d^3\alpha}{dt^3} = \alpha'''$. Entonces
 - (a) $\frac{\mathrm{d}t}{\mathrm{d}s} = \frac{1}{|\alpha'|} \text{ y } \frac{\mathrm{d}^2 t}{\mathrm{d}s^2} = -\frac{\langle \alpha', \alpha'' \rangle}{|\alpha'|^4};$
 - (b) la curvatura de α en t es $\kappa(t) = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3};$
 - (c) la torsión de α en t es $\tau(t) = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{|\alpha' \times \alpha''|^2}$.
- 7. Para cada curva parametrizada por $\alpha: I \to \mathbb{R}^3$, calcule la curvatura y la torsión (notar que las curvas *no* están parametrizadas por longitud de arco).
 - (a) $\alpha(t) = (t, t^2, t^3)$, con $I = \mathbb{R}$;
 - (b) $\alpha(t) = (t, \frac{1+t}{t}, \frac{1-t^2}{t}), \text{ con } I = \mathbb{R} \setminus \{0\};$
 - (c) $\alpha(t) = (t, f(t), g(t))$, con $I = \mathbb{R} \ y \ f, g : \mathbb{R} \to \mathbb{R}$ diferenciables;
 - (d) $\alpha(t) = (a(t \sin(t)), a(t \cos(t)), bt), \text{ con } I = \mathbb{R} \text{ y } a, b \in \mathbb{R};$
 - (e) $\alpha(t) = (a(3t t^3), 3at^2, a(3t + t^3)), \text{ con } I = \mathbb{R} \text{ y } a \in \mathbb{R}.$
- 8. Sea $\alpha : \mathbb{R} \to \mathbb{R}^3$ una curva parametrizada por longitud de arco, con $\kappa > 0$ y torsión nunca nula. Probar que si la distancia de los planos osculadores al origen es constante, entonces los planos rectificantes pasan por el origen.
- 9. Una curva $\alpha:I\to\mathbb{R}^3$ es una hélice si existe una dirección con la cual todas sus tangentes forman un ángulo constante.
 - (a) Si $\tau(s) \neq 0$ para todo $s \in I$, las siguientes condiciones son equivalentes:
 - i. la curva α es una hélice;
 - ii. el cociente $\frac{\kappa}{\tau}$ es constante;
 - iii. las rectas normales —aquéllas que pasan por un punto de la curva con dirección dada por el vector normal— son todas paralelas a un plano fijo;
 - iv. las rectas binormales —aquéllas que pasan por un punto de la curva con dirección dada por el vector binormal— forman un ángulo constante con una dirección fija.
 - (b) Si $s \in \mathbb{R}$ y a, b, c son tales que $c^2 = a^2 + b^2$, entonces la curva

$$\alpha(s) = (a\cos(\frac{s}{a}), a\sin(\frac{s}{a}), b\frac{s}{a})$$

es una hélice parametrizada por longitud de arco con $\frac{\kappa}{\tau} = \frac{b}{a}$.

- 10. Si $\alpha: I \to \mathbb{R}^3$ es una curva parametrizada por longitud de arco, la *indicatriz esférica* de α es la curva $\beta = \mathbf{t}_{\alpha}: I \to \mathbb{R}^3$.
 - (a) La curvatura de la indicatriz esférica de α es $\kappa_{\beta} = \sqrt{1 + (\frac{\tau_{\alpha}}{\kappa_{\alpha}})^2}$ donde τ_{α} , κ_{α} son la curvatura y la torsión de la curva α .

- (b) Determine la indicatriz de una recta, de una hélice circular y de una curva plana.
- (c) La indicatriz esférica de una curva es una circunferencia si y sólo si la curva es una hélice.
- 11. Supongamos que $\alpha: I \to \mathbb{R}^3$ es una curva parametrizada por longitud de arco tal que κ y τ nunca se anulan. Entonces la curva trazada por α está contenida en una esfera si y sólo si existe $A \in \mathbb{R}$ tal que

$$R^2 + (R')^2 T^2 = A,$$

con
$$R = \frac{1}{\kappa}$$
 y $T = \frac{1}{\tau}$.

12. Sea $\alpha:I\to\mathbb{R}^3$ una curva regular con curvatura y torsión nunca nulas tal que existen dos puntos $P,Q\in\mathbb{R}^3$ y una constante c>0, que satisfacen

$$\|\alpha(t) - P\|^2 + \|\alpha(t) - Q\|^2 = c.$$

Probar la desigualdad

$$\frac{1}{\kappa^2} + \left(\frac{\kappa'}{\kappa^2 \tau}\right)^2 \le \frac{c}{2}.$$

Sugerencia: recordar que vale la desigualdad

$$\sqrt{\frac{A^2 + B^2}{2}} \ge \frac{A + B}{2}$$

para todo par de números reales A, B.

- 13. Sea $\alpha:\mathbb{R}\to\mathbb{R}^3$ una curva parametrizada por longitud de arco, con curvatura y torsión nunca nulas. Sea $s_0\in\mathbb{R}$ y sea P un plano que satisface las siguientes condiciones:
 - el plano P contiene la recta tangente en s_0 , y
 - para todo entorno $I \subset \mathbb{R}$ de s_0 , existen puntos de $\alpha(I)$ a ambos lados de P.

Entonces P es el plano osculador de α en s_0 .

14. Sea $\alpha: I \to \mathbb{R}^3$ una curva regular no necesariamente parametrizada por longitud de arco con curvatura y torsión nunca nulas. Decimos que α es una curva de Bertrand si existe una curva $\beta: I \to \mathbb{R}^3$ tal que las rectas normales de α y β en puntos correspondientes de I coinciden, y en ese caso β es la compañera de Bertrand de α y puede escribirse en la forma

$$\beta(t) = \alpha(t) + rn(t).$$

- (a) En esa expresión para β , r es constante.
- (b) α es una curva de Bertrand si y sólo si existe una relación lineal

$$A\kappa + B\tau = 1$$

con A y B constantes no nulas.

- (c) Si α tiene más de una compañera de Bertrand, entonces tiene infinitas y esto ocurre si y sólo si α es una hélice circular.
- 15. Sea $\alpha: (-\epsilon, \epsilon) \to \mathbb{R}^3$ una curva regular parametrizada por longitud de arco con $\alpha(0) = (0,0,0)$. Consideramos la transformación lineal $P: \mathbb{R}^3 \to \mathbb{R}^3$ dada por la proyección ortogonal sobre el plano rectificante a α en $t_0 = 0$. Sea $\beta: (-\epsilon, \epsilon) \to \mathbb{R}^3$ la curva plana que se obtiene de proyectar α , es decir $\beta(t) = P(\alpha(t))$. Sabiendo que la curva β está dada por

$$\beta(t) = (\frac{1}{\sqrt{2}}t, t^3 + t\operatorname{sen}(t) - t^2, t^3 + t\operatorname{sen}(t) - \frac{1}{\sqrt{2}}t - t^2).$$

Hallar la curvatura de α en $t_0=0$ y los posibles triedros de Frenet-Serret en ese punto.

- 16. Dada $\sigma: I \to \mathbb{R}^3$ regular con curvatura no nula en s_0 probar que la ecuación del plano generado por $\sigma'(s_0)$ y $\sigma(s_0 + h) \sigma(s_0)$ tiende a la ecuación del plano osculador cuando h tiende a 0.
- 17. Sea $\sigma: I \to \mathbb{R}^n$ una curva parametrizada por longitud de arco tal que $\sigma'(s), \sigma''(s), \ldots, \sigma^{(n-1)}(s)$ son linealmente independientes para todo $s \in I$. Sean $t_1(s), \ldots, t_n(s)$ la ortogonalización de Gram-Schmidt de una base cualquiera cuyas primeros n-1 elementos son $\sigma'(s), \sigma''(s), \ldots, \sigma^{(n-1)}(s)$. Mostrar que la matriz cuyas columnas son t_1, \ldots, t_n forma una referencia móvil para σ y que sus curvaturas κ_{ij} verifican

$$\kappa_{ij} = -\kappa_{ji},$$

$$\kappa_{ij} = 0, \text{ si } |i - j| > 1.$$

18. Sea $\sigma: I \to \mathbb{R}^4$ una curva parametrizada por longitud de arco. Definimos el grupo de matrices O(3,1) como:

$$O(3,1) = \{ A \in \mathbb{R}^{4 \times 4} | A^t \cdot J \cdot A = J \}.$$

Donde

$$J = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$$

es la matriz asociada a la forma cuadrática de Minkowski Φ en \mathbb{R}^4 .

- (a) ¿Qué condiciones tienen que verificar σ', σ'' y σ''' para poder definir una referencia móvil $A \in O(3,1)$ 'ortogonalizando' respecto de Φ ?
- (b) ¿Qué ecuaciones verifican las curvaturas de una tal referencia móvil?
- 19. Sea $\sigma:I\to\mathbb{R}^2$ una curva regular tal que $\sigma(s)\neq 0$ para todo $s\in I$, Notamos con $[\sigma(s)]$ la clase de $\sigma(s)$ en $\mathbb{P}^1(\mathbb{R})$. Sea

$$SL(2,\mathbb{R}) := \{ A \in \mathbb{R}^{2 \times 2} | \det(A) = 1 \}.$$

Usar σ y σ' para definir una referencia móvil respecto de la acción de $SL(2,\mathbb{R})$ en $\mathbb{P}^1(\mathbb{R})$ y calcular sus curvaturas. ¿Cómo se simplifica todo si asumimos que $||\sigma(s)||=1$ para todo $s\in I$?